Part Number Hot Search : 
N302AS EVICE 1N6117E3 AT93C86A FDB44N25 PF0032 25000 Z5SMC130
Product Description
Full Text Search
 

To Download V23990-P580-A41-PM Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  v23990-p580-*4*-pm flow1 1200v/35a 3~rectifier, optional brc, inverter, ntc very compact housing, easy to route igbt! / emcon4 technology for low saturation losses and improved emc behaviour industrial drives embedded drives V23990-P580-A41-PM v23990-p580-a41y-pm with pressfit pins v23990-p580-a418-pm v23990-p580-c41-pm v23990-p580-c41y-pm with pressfit pins t j =25c, unless otherwise specified parameter symbol value unit repetitive peak reverse voltage v rrm 1600 v t h =80c 33 t c =80c 47 t h =80c 37 t c =80c 60 maximum junction temperature t j max 150 c inverter transistor t h =80c 32 t c =80c 42 t h =80c 79 t c =80c 120 t sc t j 150c 10 s v cc v ge =15v 800 v v c 175 v ce i c v ge i cpulse t j max a 1200 a w a v t j =t j max t j =t j max vce 1200v, tj top max 105 t p limited by t j max collector-emitter break down voltage dc collector current pulsed collector current power dissipation per igbt maximum junction temperature short circuit ratings turn off safe operating area t j =t j max t j =t j max p tot i 2 t t p =10ms 250 a features flow1 housing target applications schematic dc forward current surge forward current t j =25c 310 types i2t-value maximum ratings i fav a 2 s i fsm condition input rectifier diode a w power dissipation per diode p tot gate-emitter peak voltage 50hz half sine wave 105 20
v23990-p580-*4*-pm t j =25c, unless otherwise specified parameter symbol value unit maximum ratings condition inverter diode t h =80c 34 t c =80c 44 t h =80c 61 t c =80c 93 brake transistor t h =80c 25 t c =80c 31 t h =80c 62 t c =80c 94 t sc t j 150c 10 s v cc v ge =15v 800 v brake diode t h =80c 14 t c =80c 19 t h =80c 29 t c =80c 44 thermal properties insulation properties v is t=2s dc voltage 4000 v min 12,7 mm min 12,7 mm cti >200 1200 t j max i frm p tot a v v t j =t j max power dissipation per igbt pulsed collector current maximum junction temperature t j max vce 1200v, tj top max gate-emitter peak voltage p tot collector-emitter break down voltage short circuit ratings turn off safe operating area dc collector current v c w t p limited by t j max t j =t j max 20 a 50 a 75 maximum junction temperature peak repetitive reverse voltage repetitive peak forward current power dissipation per diode w 175 c v 1200 power dissipation per diode p tot t j =t j max t j =t j max dc forward current i f repetitive peak forward current i frm v rrm v ce i cpuls i c v ge peak repetitive reverse voltage a i f v rrm a c maximum junction temperature t j max 175 t j =t j max t p limited by t j max dc forward current w a a t p limited by t j max c storage temperature t stg -40+125 c -40+(tjmax - 25) comparative tracking index insulation voltage creepage distance t op operation temperature under switching condition clearance t j =t j max 20 70 1200 175 copyright vincotech 2 revision: 2
v23990-p580-*4*-pm parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max tj=25c 0,8 1,16 1,6 tj=125c 1,13 tj=25c 0,90 tj=125c 0,78 tj=25c 8 tj=125c 11 20 tj=25c tj=150c 2 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 1 ,89 k/w tj=25c 5 5,8 6,5 tj=125c tj=25c 1,6 1,95 2,3 tj=125c 2,39 tj=25c 0,5 tj=125c tj=25c 300 tj=125c tj=25c 92 tj=125c 92 tj=25c 18 tj=125c 23 tj=25c 213 tj=125c 274 tj=25c 75 tj=125c 105 tj=25c 1,62 tj=125c 2,49 tj=25c 1,81 tj=125c 2,82 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 1 ,20 k/w tj=25c 1 1,83 2,2 tj=125c 1,80 tj=25c 69 tj=125c 79 tj=25c 150 tj=125c 277 tj=25c 3,93 tj=125c 7,47 di(rec)max tj=25c 4100 /dt tj=125c 2080 tj=25c 1,69 tj=125c 3,31 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 1,55 k/w 270 1950 tj=25c 155 - v 35 15 0 vcc=960v t r t d(off) v ce =v ge erec q gate c oss q rr t rr i ges t f e on e off t d(on) i rrm v f v ge(th) v ce(sat) i ces r gint input capacitance output capacitance turn-off energy loss per pulse integrated gate resistor inverter transistor gate emitter threshold voltage value c onditions characteristic values forward voltage threshold voltage (for power loss calc. only) slope resistance (for power loss calc. only) v f v to r t input rectifier diode v v m ma 3 0 30 30 reverse current i r c f=1mhz rgon=16 0 2 0 15 rgoff=16 35 3 5 15 turn-on energy loss per pulse reverse recovered charge inverter diode peak reverse recovery current d iode forward voltage gate charge c ies reverse recovery time reverse recovered energy peak rate of fall of recovery current collector-emitter cut-off current incl. diode fall time turn-off delay time turn-on delay time rise time gate-emitter leakage current collector-emitter saturation voltage 1200 25 0 35 35 0,0012 600 1200 1500 rgon=16 mws v a n c na v ma mws n s pf ns a/s tj=25c copyright vincotech 3 revision: 2
v23990-p580-*4*-pm parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max value c onditions characteristic values tj=25c 5 5,8 6,5 tj=125c tj=25c 1,6 1,86 2,2 tj=125c 2,31 tj=25c 0,005 tj=125c tj=25c 200 tj=125c - tj=25c 127 tj=125c 129 tj=25c 36 tj=125c 42 tj=25c 232 tj=125c 276 tj=25c 74 tj=125c 112 tj=25c 1,81 tj=125c 2,42 tj=25c 1,37 tj=125c 2,19 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 1 ,53 k/w tj=25c 1,35 1,85 2,05 tj=125c 1,76 tj=25c 2,7 tj=125c tj=25c 10 tj=125c 12 tj=25c 396 tj=125c 624 tj=25c 1,55 tj=125c 3,03 di(rec)max tj=25c 36 /dt tj=125c 32 tj=25c 0,63 tj=125c 1,30 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 3 ,28 k/w b vincotech ntc reference b-value 3950 k b (25/100) t=25c 3998 k t=25c b-value b (25/50) tol. 3% v v a n s a/s a mws c v 22000 5 - 5 % tj=25c tj=25c 2 200 120 85 collector-emitter cut-off incl diode gate emitter threshold voltage 25 0,00085 gate-emitter leakage current i ces v ge(th) v ce(sat) collector-emitter saturation voltage gate charge input capacitance q gate reverse transfer capacitance e off turn-on energy loss per pulse r gint turn-off energy loss per pulse rise time turn-on delay time t f fall time t d(on) t r turn-off delay time t d(off) peak rate of fall of recovery current peak reverse recovery current reverse recovered charge c oss e on output capacitance c rss c ies integrated gate resistor nc brake transistor mw/k p ower dissipation p mw rated resistance r power dissipation constant deviation of r25 ? r/r i ges 0 15 15 960 rgon=32 rgoff=32 v ce =v ge f=1mhz 0 15 0 25 20 ma na ns pf mws v f i r i rrm diode forward voltage reverse leakage current 15 brake diode reverse recovery energy t rr q rr e rec reverse recovery time thermistor rgon=32 rgon=32 25 6 00 25 10 1200 1200 1200 25 t=25c t=25c t=25c t=25c 115 1430 copyright vincotech 4 revision: 2
v23990-p580-*4*-pm figure 1 output inverter igbt figure 2 output inverter igbt typical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 150 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 o utput inverter igbt figure 4 output inverter fwd typical transfer characteristics t ypical diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at at t p = 250 s t p = 250 s v ce = 10 v output inverter typical output characteristics 0 20 40 60 80 100 0 1 2 3 4 5 v ce (v) i c (a) 0 5 10 15 20 25 30 35 0 2 4 6 8 10 12 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 10 20 30 40 50 60 0,0 0,5 1,0 1,5 2,0 2,5 3,0 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 20 40 60 80 100 0 1 2 3 4 5 v ce (v) i c (a) copyright vincotech 5 revision: 2
v23990-p580-*4*-pm figure 5 output inverter igbt figure 6 output inverter igbt typical switching energy losses t ypical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 16 i c = 35 a r goff = 16 figure 7 o utput inverter fwd figure 8 output inverter fwd typical reverse recovery energy loss t ypical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 16 i c = 35 a output inverter e on high t e off high t e on low t e off low t 0 1 2 3 4 5 0 10 20 30 40 50 60 70 i c (a) e (mws) e off high t e on high t e on low t e off low t 0 1 2 3 4 5 6 7 8 0 10 20 30 40 50 60 70 r g ( w ) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 0 10 20 30 40 50 60 70 i c (a) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 0 10 20 30 40 50 60 70 r g ( w ) e (mws) 25 / 150 25 / 150 25 / 150 25 / 150 copyright vincotech 6 r evision: 2
v23990-p580-*4*-pm figure 9 output inverter igbt figure 10 output inverter igbt typical switching times as a t ypical switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) with an inductive load at with an inductive load at t j = 150 c t j = 150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 16 i c = 35 a r goff = 16 figure 11 o utput inverter fwd figure 12 output inverter fwd typical reverse recovery time as a t ypical reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(i c ) t rr = f(r gon ) at at t j = 25/150 c t j = 25/150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 35 a r gon = 16 v ge = 15 v output inverter t doff t f t don t r 0,00 0,01 0,10 1,00 0 10 20 30 40 50 60 70 i c (a) t ( m s) t j = t jmax -25c t rr t j = 25c t rr 0,0 0,2 0,4 0,6 0,8 0 10 20 30 40 50 60 70 r g on ( w ww w ) t rr ( m s) t doff t f t don t r 0,00 0,01 0,10 1,00 0 10 20 30 40 50 60 70 r g ( w ww w ) t ( m s) t j = t jmax -25c t rr t rr t j = 25c 0,0 0,1 0,1 0,2 0,2 0,3 0,3 0 10 20 30 40 50 60 70 i c (a) t rr ( m s) 25 / 150 25 / 150 copyright vincotech 7 r evision: 2
v23990-p580-*4*-pm figure 13 output inverter fwd figure 14 output inverter fwd typical reverse recovery charge as a t ypical reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c ) q rr = f(r gon ) at at at t j = 25/150 c t j = 25/150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 35 a r gon = 16 v ge = 15 v figure 15 o utput inverter fwd figure 16 output inverter fwd typical reverse recovery current as a t ypical reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c ) i rrm = f(r gon ) at at t j = 25/150 c t j = 25/150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 35 a r gon = 16 v ge = 15 v output inverter t j = t jmax - 25c i rrm t j = 25c i rrm 0 25 50 75 100 125 150 0 10 20 30 40 50 60 70 r gon ( w ww w ) i rrm (a) t j = t jmax -25c q rr t j = 25c q rr 0 1,2 2,4 3,6 4,8 6 7,2 8,4 0 10 20 30 40 50 60 70 r g on ( w ) q rr ( m c) t j = t jmax -25c i rrm t j = 25c i rrm 0 20 40 60 80 100 0 10 20 30 40 50 60 70 i c (a) i rrm (a) q rr t j = t jmax -25c q rr t j = 25c 0 2 4 6 8 10 0 10 20 30 40 50 60 70 i c (a) q rr ( m c) 25 / 150 25 / 150 25 / 150 25 / 150 copyright vincotech 8 r evision: 2
v23990-p580-*4*-pm figure 17 output inverter fwd figure 18 output inverter fwd typical rate of fall of forward t ypical rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(i c ) di 0 /dt,di rec /dt = f(r gon ) at at t j = 25/150 c t j = 25/150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 35 a r gon = 16 v ge = 15 v figure 19 o utput inverter igbt figure 20 output inverter fwd igbt transient thermal impedance f wd transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at at d = t p / t d = t p / t r thjh = 1,20 k/w rthjh = 1,01 k/w r thjh = 1,55 k/w rthjh = 1,31 k/w igbt thermal model values fwd thermal model values r (c/w) tau (s) r (c/w) tau (s) r (c/w) tau (s) r (c/w) tau (s) 0,09 2,9e+00 2,46 2,9e+00 0,04 9,7e+00 8,15 9,7e+00 0,42 3,4e-01 0,29 3,4e-01 0,22 8,1e-01 0,68 8,1e-01 0,48 9,0e-02 0,08 9,0e-02 0,77 1,4e-01 0,12 1,4e-01 0,16 1,1e-02 0,01 1,1e-02 0,33 2,1e-02 0,02 2,1e-02 0,05 6,6e-04 0,00 6,6e-04 0,11 3,0e-03 0,00 3,0e-03 0,08 3,4e-04 0,00 3,4e-04 thermal grease phase change interface thermal grease phase change interface output inverter t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z th-jh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 di rec /dt 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 0 10 20 30 40 50 60 70 r gon ( w ww w ) di rec / dt (a/ m s) di 0 /dt 0 500 1000 1500 2000 2500 3000 3500 4000 4500 0 10 20 30 40 50 60 70 i c (a) di rec / dt (a/ m m m m s) di rec /dt di 0 /dt 25 / 150 25 / 150 copyright vincotech 9 r evision: 2
v23990-p580-*4*-pm figure 21 output inverter igbt figure 22 output inverter igbt power dissipation as a c ollector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at at t j = 175 c t j = 175 c v ge = 15 v figure 23 o utput inverter fwd figure 24 output inverter fwd power dissipation as a f orward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 175 c t j = 175 c output inverter 0 25 50 75 100 125 150 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 50 0 50 100 150 200 t h ( o c) i c (a) 0 25 50 75 100 125 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 50 60 0 50 100 150 200 t h ( o c) i f (a) copyright vincotech 10 revision: 2
v23990-p580-*4*-pm figure 25 output inverter igbt figure 26 output inverter igbt safe operating area as a function g ate voltage vs gate charge of collector-emitter voltage i c = f(v ce ) v ge = f(q ge ) at at d = single pulse i c = 35 a t h = 80 oc v ge = 15 v t j = t jmax oc figure 27 o utput inverter igbt figure 28 output inverter igbt short circuit withstand time as a function of typical short circuit collector current as a function of gate-emitter voltage gate-emitter voltage t sc = f(v ge ) v ge = f(q ge ) at at v ce = 1200 v v ce 1200 v t j 175 oc t j = 175 oc output inverter v ce (v) i c (a) 10 3 10 0 10 -1 10 1 10 2 10 1 10 2 100us 1ms 10ms 100ms dc 10 0 10 3 10us 0 2 4 6 8 10 12 14 16 0 40 80 120 160 200 240 q g (nc) v ge (v) 240v 960v 0 10 20 30 40 50 10 12 14 16 18 20 v ge (v) t sc (s) 0 20 40 60 80 100 120 140 160 180 10 11 12 13 14 15 16 17 18 v ge (v) i c (sc) copyright vincotech 11 revision: 2
v23990-p580-*4*-pm figure 29 igbt reverse bias safe operating area i c = f(v ce ) at t j = t jmax -25 oc u ccminus =u ccplus switching mode : 3 level switching 0 10 20 30 40 50 60 70 80 0 200 400 600 800 1000 1200 1400 v ce (v) i c (a) i c max v ce max i c module i c chip copyright vincotech 12 revision: 2
v23990-p580-*4*-pm figure 1 brake igbt figure 2 brake igbt typical output characteristics t ypical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 151 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 b rake igbt figure 4 brake fwd typical transfer characteristics t ypical diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at at t p = 250 s t p = 250 s v ce = 10 v brake 0 5 10 15 20 25 30 35 40 0 1 2 3 4 5 v ce (v) i c (a) 0 5 10 15 20 25 0 2 4 6 8 10 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 5 10 15 20 25 30 35 0 0,5 1 1,5 2 2,5 3 3,5 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 5 10 15 20 25 30 35 40 0 1 2 3 4 5 v ce (v) i c (a) copyright vincotech 13 revision: 2
v23990-p580-*4*-pm figure 5 brake igbt figure 6 brake igbt typical switching energy losses t ypical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 32 i c = 25 a r goff = 32 figure 7 b rake fwd figure 8 brake fwd typical reverse recovery energy loss t ypical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 32 i c = 25 a brake t j = t jmax - 25c e rec t j = 25c e rec 0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 0 10 20 30 40 50 i c (a) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 0 25 50 75 100 125 150 r g ( w ww w ) e (mws) t j = t jmax -25c e off t j = 25c e on e off 0,0 1,0 2,0 3,0 4,0 5,0 0 10 20 30 40 50 i c (a) e (mws) t j = t jmax -25c e off e on e on t j = 25c e off 0,00 1,00 2,00 3,00 4,00 5,00 6,00 7,00 0 25 50 75 100 125 r g ( w ww w ) e (mws) 25 / 150 25 / 150 25 / 150 25 / 150 copyright vincotech 1 4 revision: 2
v23990-p580-*4*-pm figure 9 brake igbt figure 10 brake igbt typical switching times as a t ypical switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 32 i c = 25 a r goff = 32 figure 11 b rake igbt figure 12 brake fwd igbt transient thermal impedance f wd transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at d = tp / t at d = tp / t r thjh = 1,526 k/w r thjh = 1,29 k/w r thjh = 3,28 k/w r thjh = 2,76 k/w thermal grease phase change interface thermal grease phase change interface brake t doff t f t don t r 0,00 0,01 0,10 1,00 0 10 20 30 40 50 i c (a) t ( m s) t doff t f t don t r 0,00 0,01 0,10 1,00 0 25 50 75 100 125 150 r g ( w ww w ) t ( m s) t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 25 / 150 25 / 150 copyright vincotech 1 5 revision: 2
v23990-p580-*4*-pm figure 13 brake igbt figure 14 brake igbt power dissipation as a c ollector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at at t j = 175 oc t j = 175 oc v ge = 15 v figure 15 b rake fwd figure 16 brake fwd power dissipation as a f orward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 175 oc t j = 175 oc brake 0 25 50 75 100 125 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 0 50 100 150 200 t h ( o c) i c (a) 0 10 20 30 40 50 60 0 50 100 150 200 th ( o c) p tot (w) 0 5 10 15 20 25 0 50 100 150 200 th ( o c) i f (a) copyright vincotech 16 revision: 2
v23990-p580-*4*-pm figure 1 rectifier diode figure 2 rectifier diode typical diode forward current as d iode transient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at at t p = 250 s d = t p / t r thjh = 1,89 k/w figure 3 r ectifier diode figure 4 rectifier diode power dissipation as a f orward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 150 oc t j = 150 oc input rectifier bridge 0 20 40 60 80 100 120 0,0 0,3 0,5 0,8 1,0 1,3 1,5 1,8 v f (v) i f (a) t j = 25c t j = t jmax -25c t p (s) z thjc (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 15 30 45 60 75 90 0 25 50 75 100 125 150 t h ( o c) p tot (w) 0 10 20 30 40 50 60 0 25 50 75 100 125 150 t h ( o c) i f (a) copyright vincotech 17 revision: 2
v23990-p580-*4*-pm figure 1 thermistor figure 2 thermistor typical ntc characteristic t ypical ntc resistance values as a function of temperature r t = f(t) thermistor ntc-typical temperature characteristic 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000 25 45 65 85 105 125 t (c) r/  [ ] w = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - 25 1 00/25 11 2 5 )( tt b ertr copyright vincotech 18 revision: 2
v23990-p580-*4*-pm t j 150 c r gon 16  r goff 16  figure 1 o utput inverter igbt figure 2 output inverter igbt turn-off switching waveforms & definition of t doff , t eoff turn-on switching waveforms & definition of tdon, t eon (t eoff = integrating time for e off ) (t eon = integrating time for e on ) v ge (0%) = -15 v v ge (0%) = -15 v v ge (100%) = 15 v v ge (100%) = 15 v v c (100%) = 600 v v c (100%) = 600 v i c (100%) = 35 a i c (100%) = 35 a t doff = 0,27 s t don = 0,09 s t eoff = 0,55 s t eon = 0,31 s figure 3 o utput inverter igbt figure 4 output inverter igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 600 v v c (100%) = 600 v i c (100%) = 35 a i c (100%) = 35 a t f = 0,11 s t r = 0,02 s switching definitions output inverter general conditions = = = i c 1% v ce 90% v ge 90% -40 -20 0 20 40 60 80 100 120 140 -0,4 -0,2 0 0,2 0,4 0,6 0,8 time (us) % t doff t eoff v ce i c v ge i c10% v ge10% t don v ce 3% -50 0 50 100 150 200 250 300 350 2,9 3 3,1 3,2 3,3 3,4 3,5 time(us) % i c v ce t eon v ge fitted i c10% i c 90% i c 60% i c 40% -20 0 20 40 60 80 100 120 140 0,1 0,2 0,3 0,4 0,5 0,6 time (us) % v ce i c t f i c10% i c90% -25 25 75 125 175 225 275 325 3 3,1 3,2 3,3 3,4 time(us) % t r v ce i c copyright vincotech 19 revision: 2
v23990-p580-*4*-pm figure 5 output inverter igbt figure 6 output inverter igbt turn-off switching waveforms & definition of t eoff turn-on switching waveforms & definition of t eon p off (100%) = 21,01 kw p on (100%) = 21,01 kw e off (100%) = 2,82 mj e on (100%) = 2,49 mj t eoff = 0,55 s t eon = 0,31 s figure 7 o utput inverter igbt turn-off switching waveforms & definition of t rr v d (100%) = 600 v i d (100%) = 35 a i rrm (100%) = -79 a t rr = 0,28 s switching definitions output inverter i c 1% v ge 90% -20 0 20 40 60 80 100 120 -0,1 0,1 0,3 0,5 0,7 time (us) % p off e off t eoff v ce 3% v ge 10% -25 25 75 125 175 225 3 3,1 3,2 3,3 3,4 time(us) % p on e on t eon i rrm 10% i rrm 90% i rrm 100% t rr -240 -200 -160 -120 -80 -40 0 40 80 120 3 3,1 3,2 3,3 3,4 3,5 3,6 time(us) % i d v d fitted copyright vincotech 20 revision: 2
v23990-p580-*4*-pm figure 8 output inverter fwd figure 9 output inverter fwd turn-on switching waveforms & definition of t qrr turn-on switching waveforms & definition of t erec (t qrr = integrating time for q rr ) (t erec = integrating time for e rec ) i d (100%) = 35 a p rec (100%) = 21,01 kw q rr (100%) = 7,47 c e rec (100%) = 3,31 mj t qrr = 1,00 s t erec = 1,00 s switching definitions output inverter t qrr -250 -200 -150 -100 -50 0 50 100 150 3 3,2 3,4 3,6 3,8 4 4,2 % i d q rr time(us) -20 0 20 40 60 80 100 120 3 3,5 4 4,5 5 time(us) % p rec e rec t erec copyright vincotech 21 revision: 2
v23990-p580-*4*-pm in datamatrix as in packaging barcode as p589-a41 p589-a41 p589-a418 p589-a418 p589-c41 p589-c41 a version c version 3-leg 3-leg pin x y 1 52,55 0 2 47,7 0 3 44,8 0 4 37,8 0 5 37,8 2,8 6 35 0 7 35 2,8 8 28 0 9 25,2 0 10 22,4 0 11 19,6 0 12 16,8 0 13 14 0 14 11,2 0 15 8,4 0 16 5,6 0 17 2,8 0 18 0 0 19 0 28,5 20 2,8 28,5 pin x y pin x y 21 7,5 28,5 25 29 28,5 29 52,55 25 22 14,5 28,5 26 31,8 28,5 30 52,55 16,9 23 17,3 28,5 27 36,5 28,5 31 52,55 8,6 24 22 28,5 28 43,5 28,5 32 52,55 2,8 w/o pin 1,31,32 rectifier break igbt break fwd ordering code pin table pin table pin table v23990-p589-a41-pm v23990-p589-a418-pm inverter igbt inverter fwd outline v23990-p589-c41-pm pinout ordering code & marking ordering code and marking - outline - pinout features version without thermal paste 17mm housing without thermal paste 12mm housing without thermal paste 17mm housing
v23990-p580-*4*-pm disclaimer life support policy as used herein: the information given in this datasheet describes the type of component and does not represent assured characteristics. for tested values please contact vincotech.vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of vincotech. 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. a critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright vincotech 23 revision: 2


▲Up To Search▲   

 
Price & Availability of V23990-P580-A41-PM

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X